

Available online at www.sciencedirect.com

Journal of Magnetism and Magnetic Materials 272-276 (2004) 229-230

www.elsevier.com/locate/jmmm

Low-temperature thermal expansion and magnetostriction of $YbRh_2(Si_{1-x}Ge_x)_2$ (x = 0 and 0.05)

R. Küchler*, F. Weickert, P. Gegenwart, N. Oeschler, J. Ferstl, C. Geibel, F. Steglich

Max-Planck Institute for Chemical Physics of Solids, Noethnitzer Str. 40, D-01187 Dresden, Germany

Abstract

We report a comparative study of the low-temperature thermal expansion and magnetostriction of the non-Fermi liquid (NFL) system YbRh₂(Si_{1-x}Ge_x)₂ (x = 0 and nominally 0.05). The undoped compound (x = 0) shows a sharp phase transition anomaly, related to antiferromagnetic ordering at $T_N = 70$ mK, that is suppressed by a small critical field $B_c = 0.06$ T ($B \perp c$). By contrast, very tiny anomalies at $T_N = (20 \pm 5)$ mK and $B_c = (0.027 \pm 0.005)$ T are observed in the x = 0.05 system. The NFL behavior above T_N is not affected by the Ge substitution. © 2003 Elsevier B.V. All rights reserved.

Keywords: Non-Fermi liquid; Quantum critical point; YbRh2Si2

The tetragonal heavy fermion system YbRh₂Si₂ is located very close to an antiferromagnetic (AF) quantum critical point (QCP). At B = 0 it shows pronounced non-Fermi liquid (NFL) behavior, i.e. $C/T \propto -\log(T)$ from 10 K down to 0.3 K, below which it diverges stronger than logarithmic [1]. Well below the AF phase transition at $T_N = 70 \text{ mK}$ it enters a Landau Fermi liquid state with a very heavy quasiparticle mass [2]. From both, the magnetic entropy at T_N [2] and μ SR experiments [3] a very small value of about $10^{-2} \mu_{\rm B}/{\rm Yb}$ for the ordered moment in the AF state is deduced. The application of pressure to YbRh₂Si₂ increases T_N [5] as expected, because the ionic volume of the magnetic 4f¹³ Yb3+ configuration is smaller than that of the nonmagnetic 4f¹⁴ Yb²⁺ one. Expanding the crystal lattice by randomly substituting Ge for the smaller isoelectric Si atoms allows one to reach the zero-field OCP. Below, we report a comparative study of low-temperature thermal expansion and magnetostriction measurements on pure (x = 0) and Ge-doped (nominal concentration: x = 0.05) YbRh₂(Si_{1-x}Ge_x)₂.

Single crystalline platelets with residual resistivities of 1 $\mu\Omega$ cm (x=0) [2] and 5 $\mu\Omega$ cm (x=0.05) [4] were

grown from In flux. The $T_{\rm N}$ vs. pressure diagram of the Ge-doped system matches perfectly with that found for pure YbRh₂Si₂ if the pressure axis is shifted by -0.2 GPa [5]. This reveals an effective Ge-content of 0.02 ± 0.004 in agreement with the microprobe analysis [6]. The large difference between nominal and effective Ge-content is due to the fact, that Ge dissolves better than Si in the In-flux. The thermal expansion coefficient α is defined as $L^{-1} dL/dT$, where L denotes the sample length. For temperatures between 50 mK and 6 K, a high-resolution capacitive dilatometer of pure silver was used. The low-temperature measurements including the magnetostriction were performed in a CuBe dilatometer.

Above 100 mK, we observe for both systems a negative $\alpha(T)$ with a moderate anisotropy $\alpha_{\perp} \approx 1.5\alpha_{\parallel}$ (Fig. 1). No significant difference between the two systems is found. The pronounced NFL effects visible in α/T vs. T are discussed in Ref. [7]. At lower temperatures, the pure compound shows a sharp phase transition at $T_{\rm N}=70$ mK that has disappeared for the x=0.05 system (inset Fig. 1). For the latter the onset of the very weak phase transition observed recently in specific-heat measurements at $T_{\rm N}=(20\pm5)$ mK [6], becomes visible only below about 25 mK.

It has been shown recently, that the AF order in YbRh₂Si₂ is suppressed by critical magnetic fields B_c of

^{*}Corresponding author. Fax: +49-351-4646-2360. *E-mail address:* kuechler@cpfs.mpg.de (R. Küchler).

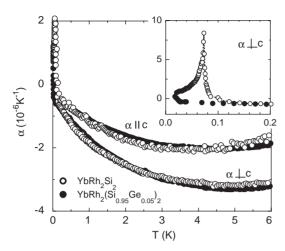


Fig. 1. Linear thermal expansions of YbRh₂(Si_{1-x}Ge_x)₂ for x=0 (open circles) and x=0.05 (solid circles) along and perpendicular to the tetragonal c-axis. The inset displays the low-temperature data for $\alpha \perp c$.

0.06 T (0.66 T) applied perpendicular (parallel) to the c-axis [2]. The isothermal magnetostriction $\Delta L/L$ for the pure compound shows a clear kink at $B_{\rm c}$, indicative of a second-order phase transition (Fig. 2). The negative slope of the magnetostriction for $B > B_{\rm c}$ results from the magnetic polarization of the Yb³⁺ moments [8]. For the x=0.05 system we observe much smaller changes in $\Delta L/L$ (in order to reduce the noise, several independent measurements have been averaged). This might be related to different in-plane orientations of the two samples, and/or to the effect of the Ge-substitution. A kink, indicative for $B_{\rm c}$, is visible at (0.027 ± 0.005) T. A similar value for the critical field in the Ge-doped system has been deduced from specific heat measurements [6].

In summary, the volume expansion produced by a tiny substitution of Si by Ge in $YbRh_2(Si_{1-x}Ge_x)_2$

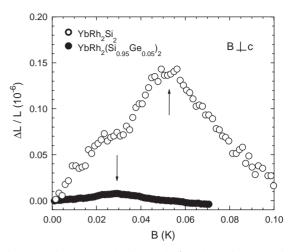


Fig. 2. Isothermal length change $\Delta L/L$ (along the magnetic field) vs. B, applied perpendicular to the c-axis. Data for YbRh₂Si₂ (open circles) and YbRh₂(Si_{0.95}Ge_{0.05})₂ (solid circles) are taken at T=15 mK and $T\approx 10$ mK, respectively. Arrows indicate critical fields B_c .

reduces T_N and B_c to about 20 mK and 25 mT for (nominal) x = 0.05. Thus in this system, NFL behavior can be studied extremely close to a zero-field QCP [6,7].

References

- [1] O. Trovarelli, et al., Phys. Rev. Lett. 85 (2000) 626.
- [2] P. Gegenwart, et al., Phys. Rev. Lett. 89 (2002) 056402.
- [3] K. Ishida, et al., Physica B 326 (2003) 403.
- [4] O. Trovarelli, et al., Physica B 312-313 (2002) 401.
- [5] S. Mederle, et al., J. Phys.: Condens. Matter 14 (2002) 10731.
- [6] J. Custers, et al., Nature 424 (2003) 524.
- [7] R. Küchler, et al., Phys. Rev. Lett. 91 (2003) 066405.
- [8] Y. Tokiwa, et al., J. Magn. Magn. Mater., these proceedings; doi: 10.1016/j.mmm.2003.12.398.