

Physica B 378-380 (2006) 648-649

www.elsevier.com/locate/physb

Peculiar quantum criticality in ferromagnetic $CePd_{1-x}Rh_x$

J.G. Sereni^{a,*}, R. Küchler^b, C. Geibel^b

^aBajas Temperaturas, Centro Atómico Bariloche, RA-8400 Bariloche, Argentina ^bMax-Planck Institut for Chemical Physics of Solids, D-01187 Dresden, Germany

Abstract

The alloy $\operatorname{CePd}_{1-x}\operatorname{Rh}_x$ is a unique example undergoing quantum critical behavior between ferromagnetic $\operatorname{CePd}(T_C=6.6\,\mathrm{K})$ and mixed valence CeRh . The negative curvature of $T_C(x)$ holds up to x=0.6, followed by a positive *tail* with the lowest measured $T_C=0.25\,\mathrm{K}$ at x=0.80. We report on a detailed investigation within the $0.80 \leqslant x \leqslant 1$ range, using specific heat (C_m) and thermal expansion (β) techniques. A change of regime is observed in the T dependence of both parameters at $x_{\rm cr}=0.85$, from $\ln(T_0/T)$ to $A(x)T^{-q}$, with q=0.54 at x=0.87 and the coefficient A(x) vanishing as $x\to 1$. Simultaneously, a change of sign in $\beta(T)$ is observed at $x_{\rm cr}$. The vanishing $C_m/T=A(x)T^{-q}$ contribution coexists beyond $x_{\rm cr}$ with a Fermi Liquid component.

PACS: 71.10.Hf; 75.40.-s; 71.27.+a; 71.20.Lp; 75.30.Nb

Keywords: CePd_{1-x}Rh_x; Quantum criticality; Ferromagnetism; Non-Fermi liquid

Ferromagnetic (F) quantum phase transitions are being investigated in a number of itinerant stoichiometric compounds, where the critical conditions are tuned by applying pressure. In these compounds, namely MnSi, UGe₂ and ZrZn₂ [1], the second-order F-transition reveals notable differences from the classical behavior. Notably, the phase boundary disappears at finite temperature in a first-order transition. Although present theories predict a first-order quantum critical (QC) point in pure itinerant systems [2], disorder is expected to induce smeared QC effects, extending the second-order phase boundary to lower temperatures. This allows to trace the F-transition closer to the critical point, where the competition between thermal and non-thermal fluctuations arise novel behaviors

F-CePd_{1-x}Rh_x gives the opportunity to investigate the QC region by tuning the concentration of alloyed Celigands. In this case, the driving force is the *chemical* potential rather than *chemical* pressure, since the main difference between Pd and Rh is one 4d-band electron rather than the atomic size ($\approx 2\%$).

This system can be continuously driven from a F-ground state in CePd (with $T_{\rm C}=6.6\,{\rm K}$), to a mixed valence state in CeRh. Its Curie temperature, $T_{\rm C}(x)$, was traced in more than one decade down to $T_{\rm C}=0.25\,{\rm K}$ at x=0.80 [3] showing that the classical negative curvature of $T_{\rm C}(x)$ holds up to x=0.60. Beyond that concentration a positive curved *tail* sets on, with the critical concentration (where $T_{\rm C}(x) \to 0$) extrapolated to $x_{\rm cr}=0.85$.

Previous analysis on the specific heat T dependence (C_m/T) showed that a $-\ln T$ dependence develops as $x \to x_{\rm cr}$, in accordance with theoretical predictions for a 3D F-spin-density wave scenario [4]. Above 10 K this $-\ln T$ dependence merges into the electronic (γ_0) contribution, enhanced by the strongly hybridized excited crystal field levels, in coincidence with the rapid increase of the Curie–Weiss temperature for x > 0.70.

Owing to the positive curvature of T_C (x>0.6) tail, its extrapolation to $T_C=0$ tends to be asymptotic. Hence, a detailed investigation at, and beyond $x_{\rm cr}$, is required in order to determine how the expected Fermi liquid (FL) phase arises in a vanishing magnetic medium. In this paper, we report the results of such a study performed within the $0.80 \le x \le 1$ range, using C_m and thermal expansion (β) techniques.

^{*}Corresponding author. Tel.: +542944445171; fax: +542944445299. E-mail address: jsereni@cab.cnea.gov.ar (J.G. Sereni).

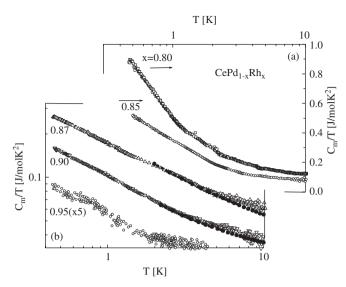


Fig. 1. (a) Logarithmic T dependence of specific heat and (b) in a double logarithmic scale. For x = 0.90, $\gamma_0 = 0.028 \, \mathrm{J/mol} \, \mathrm{K}^2$ is subtracted, see the text. Results of χ ($T > 2 \, \mathrm{K}$) from x = 0.87 and 0.90 (\bullet) are included for comparison {in arbitrary units}.

The most significant feature at $x = x_{cr}$ is the C_m/T vs. Tdependence change from a $\propto -\ln T$ to a power law: $A(x)T^{-q}$, for $x \ge 0.87$. In Fig. 1 we compare those behaviors in a simple logarithmic representation for $x \le 0.85$ (Fig. 1a) and a double logarithmic one for $x \ge 0.87$ (Fig. 1b). From the latter we extract an exponent $q = 0.54 \pm 0.01$. Since A(x) decreases asymptotically as $\propto -\log(b \times x)$, a remnant contribution is still observed in CeRh. Such a vanishing contribution coexists with a FL one, recognized from the $\gamma_0 = 0.028$ and $0.014 \,\mathrm{J/mol}\,\mathrm{K}^2$ values for x = 0.95 and 1, respectively. The latter value is in perfect agreement with the Wilson ratio (χ_0/γ_0) for a sixfold mixed valence ground state (with J = 5/2) since for CeRh $\chi_0 = 4.6 \times 10^{-4}$ emu/mol. The $\chi(T, x)$ results also exhibit anomalous departures from CW-law at high T with fractional exponents (≈ 0.8) around $x_{\rm cr}$. At low T, a weak, but power law, contribution is observed with similar exponent to that of C_m/T (see bullets in Fig. 1b). Though the lack of saturation at high fields excludes an impurity origin, measurements below 2K are required to confirm this behavior. Electrical resistivity (ρ) confirms the presence of a remnant magnetic contribution at low temperature since $\rho(T)$ deviates from the FL $-\rho \propto T^2$ dependence below 20 K.

The change from a $C_m/T \propto -\ln T$ dependence to a T^{-q} one at x=0.87 cannot be attributed to a sudden increase of atomic disorder. Its limited influence is evidenced by the sharp $\chi'_{\rm ac}(T,x)$ maxima and $C_m/T_{\rm max}$ widths [3]. Further indications in that sense is given by $\rho(T)$. This system

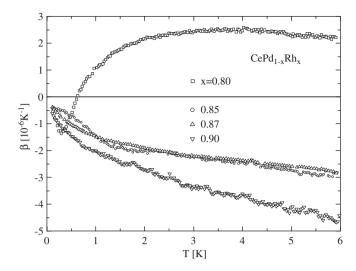


Fig. 2. Temperature dependence of volume thermal expansion.

shows the maximum of its residual resistivity $\rho(T \to 0)$ at $x \approx 0.65$, where the valence instability sets on [5] instead of at x = 0.5 as expected from Nurdheim's rule. In fact, the RRR factor $(\rho_{300 \text{ K}}/\rho_0)$ grows more than one decade between x = 0.80 and CeRh.

Similar evolution is shown by the thermal expansion, β , see Fig. 2. The sharp minimum of $\beta(T)$ at 0.25 K in the x=0.80 sample marks the lowest, but still well defined, $T_{\rm C}$ value. Together with a change of sign, a non-monotonous T dependence is observed in sample x=0.85. This reveals a competition between different effects, which may occur in different directions of this strongly anisotropic structure. Even these samples being polycrystalline, perpendicular linear thermal expansion components show different T dependencies [6]. At x=0.87, a $\beta \propto -T \ln T$ dependence is observed up to about 2 K, whereas at x=0.90 it coincides with the $C_m(T)$ power-law dependence. This makes the β/C_m ratio weakly temperature dependent but growing between x=0.80 and 0.90.

These thermodynamical properties of $CePd_{1-x}Rh_x$ around x_{cr} show that, despite the changes in the T dependence of C_m and β , the QC region extends beyond x_{cr} and coexist with a FL contribution from the mixed valence component.

References

- [1] See for example, M. Uhlarz, et al., Phys Rev. Lett. 93 (2004) 256404 and references therein.
- [2] T.R. Kirkpatrick, et al., Phys. Rev. B 67 (2003) 024419.
- [3] J.G. Sereni, et al., Physica B 359-361 (2005) 41.
- [4] T. Moriya, et al., J. Phys. Soc. Japan 64 (1995) 960.
- [5] J.G. Sereni, Physica B 215 (1995) 273.
- [6] R. Küchler, Ph.D. Thesis, University of Dresden, 2005, unpublished.