

Available online at www.sciencedirect.com

www.elsevier.com/locate/physb

Pressure effect on superconductivity in $CeCoIn_{5-x}Sn_x$ studied by thermal expansion

J.G. Donath^{a,*}, P. Gegenwart^a, R. Küchler^a, N. Oeschler^a, F. Steglich^a, E.D. Bauer^b, J.L. Sarrao^b

^aMax-Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany
^bLos Alamos National Laboratory, Los Alamos, NM 87545, USA

Abstract

We present low-temperature thermal expansion measurements on the Sn-substituted heavy fermion superconductor $CeCoIn_{5-x}Sn_x$ for $0 \le x \le 0.12$ in which T_c is rapidly suppressed from 2.3 (x=0) to 0.7 K (x=0.12). The analysis of the superconducting transition anomalies reveals a drastic change of the uniaxial pressure dependences of T_c with Sn substitution. The hydrostatic pressure dependence of T_c is positive for Sn concentrations $x \le 0.06$ and changes sign at larger x. A first-order superconducting transition, caused by Pauli limiting in magnetic fields that suppress T_c to below 0.7 K, is visible at $x \le 0.06$.

PACS: 74.70.Tx; 71.27. + a; 75.30.Mb

Keywords: CeCoIn5; Heavy fermion superconductivity; Quantum critical point

The tetragonal heavy fermion (HF) system CeCoIn₅ has attracted much interest because of its unusual normal and superconducting (SC) properties. An unconventional SC state below $T_c = 2.3 \,\mathrm{K}$ is indicated by power-law behavior in specific heat and thermal conductivity [1]. Its nodal structure obtained by thermal conductivity indicates most likely a d-wave nature [2]. Strong Pauli limiting leads to a first-order transition when superconductivity is suppressed by magnetic fields to temperatures below 0.7 K [3]. Furthermore, evidence for the formation of an inhomogeneous SC (FFLO) state has been found very close to H_{c2} = 5 T (B||c) and 11.5 T $(B \perp c)$ [3,4]. The normal state, which electronically due to the layered crystal structure is quasitwo-dimensional, shows pronounced non-Fermi liquid effects related to a magnetic field tuned quantum critical point $H_{\rm QCP} \approx H_{c2}$ [5,6]. Remarkably, $H_{\rm QCP}$ and H_{c2} cannot be separated from each other by suppressing

*Corresponding author. Tel.: +49 351 4646 2323; fax: +49 351 4646 2360.

E-mail address: donath@cpfs.mpg.de (J.G. Donath).

superconductivity with Sn substitution in $CeCoIn_{5-x}Sn_x$ [7].

We use thermal expansion measurements to study the SC properties of $CeCoIn_{5-x}Sn_x$. Since the Sn atoms preferentially occupy the in-plane In(1)-site [8], this allows to investigate the evolution of the anisotropy in this system in a controlled way. The measurements on the same single crystals studied in Ref. [7] have been performed with the aid of a high-resolution capacitive dilatometer adapted to a dilution refrigerator.

Previous specific heat measurements have shown that the Sn-substitution leads to a drastic suppression of the SC transition with a rate ${\rm d}T_{\rm c}/{\rm d}x=-0.6\,{\rm K/at\%}$ Sn [7]. Fig. 1 displays the linear thermal expansion measured along and perpendicular to the c-axis for different Sn concentrations. For measurements along the c-direction, the positive jump anomaly $\Delta\alpha_{\parallel}>0$ at $T_{\rm c}$, observed for x=0, becomes suppressed with increasing Sn concentration, resulting in a pronounced negative anomaly at x=0.12. This resembles the evolution of the c-axis expansion behavior in undoped CeCoIn₅ under magnetic fields [9]. For a quantitative analysis, the jump anomalies $\Delta\alpha_{\parallel,\perp}$ are

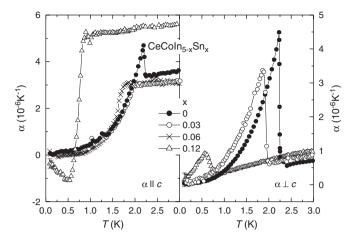


Fig. 1. Temperature dependence of the linear thermal expansion coefficient along (left) and perpendicular (right) to the c-axis for various concentrations of $CeCoIn_{5-x}Sn_x$.

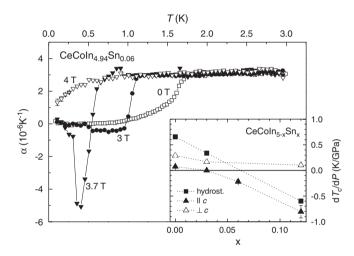


Fig. 2. Temperature dependence of the c-axis linear thermal expansion of CeCoIn_{4.94}Sn_{0.06} at various magnetic fields applied along the c-axis. Inset: x-dependence of hydrostatic and uniaxial pressure dependences of $T_{\rm c}$ in CeCoIn_{5-x}Sn $_x$ for the limit of vanishing pressure.

estimated as usual by equal-areas construction. The uniaxial pressure dependences of $T_{\rm c}$ in the zero-pressure limit are obtained by using the Ehrenfest relation, $\partial T_{\rm c}/\partial P_{\parallel,\perp} = V_{\rm mol} T_{\rm c} \Delta \alpha_{\parallel,\perp}/\Delta C$, where $V_{\rm mol}$ denotes the molar volume and ΔC the jump anomaly in specific heat [7]. The hydrostatic pressure dependence is then obtained by calculating $\partial T_{\rm c}/\partial P = \partial T_{\rm c}/\partial P_{\parallel} + 2\partial T_{\rm c}/\partial P_{\perp}$.

As shown in the inset of Fig. 2, the so-derived hydrostatic and uniaxial pressure dependences of the SC transition show a pronounced concentration dependence. The positive hydrostatic pressure dependence of undoped $CeCoIn_5$ indicates that the system is located on the left side of the maximum of the "dome" found in the T_c vs. P diagram [10]. The partial substitution of In by Sn leads to

an increase of the f-conduction electron hybridization, evidenced by a substantial increase of the characteristic maximum temperature in the electrical resistivity [11]. Our data indicate a strong decrease in the hydrostatic pressure dependence with Sn substitution. $\partial T_c/\partial P$ becomes negative for $x \ge 0.06$. This indicates that the system is driven towards the right side of the SC dome in accordance with measurements of the electrical resistivity CeCoIn_{4.88}Sn_{0.12} under hydrostatic pressure [12]. Most interestingly, it is the c-axis uniaxial pressure dependence which is most drastically changed in CeCoIn_{5-x}Sn_x although the Sn atoms preferentially occupy the in-plane In(1) site. This supports our previous conclusion that the HF properties in CeCoIn₅ are most sensitive to c-axis strain, counterintuitive to viewing this system as a 2D HF system [9].

Finally, we discuss the effect of Sn substitution to the first-order SC transition in magnetic fields close to H_{c2} which is caused by strong Pauli limiting [3]. As shown for CeCoIn_{4.94}Sn_{0.06} in Fig. 2, with increasing magnetic field, the SC transition anomaly changes from a step-like decrease at low fields to a sharp, almost divergent behavior indicative of a first-order transition for fields near H_{c2} . A similar observation has been made in CeCoIn₅ [9]. For larger Sn concentration, the first-order transition is suppressed by disorder. We also note that specific heat experiments on CeCoIn_{4.94}Sn_{0.06} show no first-order transition [13].

To summarize, the substitution of In by Sn in $CeCoIn_{5-x}Sn_x$ leads to a drastic change in the pressure dependence of the SC transition in this system. Although the Sn atoms preferentially occupy the in-plane In(1) site, they most effectively increase the f-conduction electron hybridization along the *c*-axis. The detailed analysis of the normal state thermal expansion behavior of $CeCoIn_{5-x}Sn_x$ will be published elsewhere [14].

References

- [1] R. Movshovich, et al., Phys. Rev. Lett. 86 (2001) 5152.
- [2] K. Izawa, et al., Phys. Rev. Lett. 87 (2001) 057002.
- [3] A. Bianchi, et al., Phys. Rev. Lett. 89 (2002) 137002;
 A. Bianchi, et al., Phys. Rev. Lett. 91 (2003) 187004.
- [4] H. Radovan, et al., Nature 425 (2003) 51.
- [5] A. Bianchi, et al., Phys. Rev. Lett. 91 (2003) 257001.
- [6] J.P. Paglione, et al., Phys. Rev. Lett. 91 (2003) 246405.
- [7] E.D. Bauer, et al., Phys. Rev. Lett. 94 (2005) 047001.
- [8] M. Daniel, et al., Physica B 359–361 (2005) 401.
- [9] N. Oeschler, et al., Phys. Rev. Lett. 91 (2003) 076402.
- [10] V.A. Sidorov, et al., Phys. Rev. Lett. 89 (2002) 157004.
- [11] E.D. Bauer, et al., Physica B 359-361 (2005) 35.
- [12] S.M. Ramos, et al., Physica B 359-361 (2005) 398.
- [13] E.D. Bauer, et al., unpublished results.
- [14] J.G. Donath, et al., to be published.